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Abstract

Stability and resilience characterize the asymptotic responses of perturbations to the equilibria of ecological models. Short-term
responses, however, can differ markedly from asymptotic responses. Perturbations to a stable equilibrium may, for example,
produce trajectories that initially move away from, rather than towards, the equilibrium. The maximum short-term rate of
departure from the equilibrium is called the “reactivity”, and stable equilibria with positive reactivity are called “reactive”. These
transient responses can be large and long-lasting, and have been reported in a variety of ecological models. In this paper we
explore the reactivity of predator–prey and food web models. We show that coexistence equilibria are reactive in all predator–prey
and food web models in which at least one species has a per capita growth rate that is independent of its own density. These
constitute the vast majority of published models. When density-dependent mortality of the top predator is included in the form
of a non-linear “closure term”, reactivity always decreases, and may be eliminated altogether. Our results imply that short-term
amplification of perturbations is a real possibility for predator–prey interactions and food webs.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The equilibria of ecological models are often
characterized by their stability and resilience, i.e.
by whether small perturbations to the equilibrium
eventually decay and, if so, how fast. Thus, stability
and resilience characterize asymptotic dynamics. An
equilibrium is locally asymptotically stable if a small
perturbation eventually decays, regardless of what
happens to the perturbation in the short term.

In some stable systems, however, the immediate re-
sponse to some perturbations is a trajectory that moves
away from, rather than towards, the equilibrium. This
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transient growth can be significant and long-lasting.
Equilibria that exhibit this property are said to be
“reactive” (Neubert and Caswell, 1997). Reactivity
has now been documented in a number of ecolog-
ical models(Neubert and Caswell, 1997; Chen and
Cohen, 2001; Neubert et al., 2002; Ives et al., 2003;
Marvier et al., 2003), andIves et al. (2003)have de-
veloped methods for estimating reactivity from time
series.

The short-term growth of a perturbation is often as
important as its long-term decay. Ecosystem managers
and conservation biologists must deal with short-term
responses for economic and political reasons. Also,
real ecosystems typically do not complete their re-
sponse to a perturbation before the next one occurs.
Instead, they are buffeted by a more or less continual
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series of perturbations, and transient behavior may be
the norm rather than the exception in nature.

In this paper, we investigate the transient dy-
namics of predator–prey and, more generally, food
web models. InSection 2, we briefly review the
indices used to characterize responses to perturba-
tions. In Section 3, we show that perturbations to
coexistence equilibria of food web models are al-
ways reactive if the per-capita mortality rates of top
predators are density-independent. The influence of
density-dependent predator mortality is discussed in
Section 4. In Section 5we give an example using
the MacArthur–Rosenzweig predator–prey model.
Results are discussed inSection 6.

2. Responses to perturbation

Consider a system of non-linear differential equa-
tions modelling the interaction betweenm species
whose population densities are collected in the vector
n(t):

dn

dt
= f (n). (1)

The equilibria of system(1) are those pointŝn that
satisfy

f (n̂) = 0. (2)

To first approximation, the dynamics of a small per-
turbation (x(t)) of the equilibrium are governed by the
linear system

dx

dt
= Ax, (3)

where them×mmatrixA is the Jacobian matrix with
elements

aij = ∂fi

∂nj

∣∣∣∣
n̂

. (4)

2.1. Asymptotic responses:t → ∞

The asymptotic behavior of the solutions to system
(3) determine the stability of the equilibrium point. If
x(t)→ 0 ast → ∞ for all initial conditionsx(0), the
equilibrium point is said to beasymptotically stable.
A sufficient condition for stability is that all of the

eigenvalues ofA, call themλi(A), have negative real
parts. From here on, we consider only stable equilibria.

To quantify the stability of an equilibrium point,
Pimm and Lawton (1977), introduced a measure they
called resilience. Resilience, for which we here use
the symbolν∞, is the asymptotic rate of decay of a
typical perturbation and is calculated as

ν∞(A) = −Re(λ1(A)), (5)

whereλ1(A) is the eigenvalue with largest real part.
We will assume, from here on, that this eigenvalue is
unique. The more resilient the equilibrium, the more
rapidly perturbations decay in the long run.

2.2. Instantaneous responses:t → 0

Stability and resilience determine the long-run re-
sponse to perturbations. They say nothing, however,
about the short-term response. In fact, a small pertur-
bation to a stable equilibrium point can exhibit signif-
icant growth in the short term.

Neubert and Caswell (1997)introduced a measure
of the short-term transient growth of perturbations
calledreactivity, that we here denote asν0. Reactivity
is defined as the maximum, taken over all initial con-
ditions, of the instantaneous rate of amplification of a
small perturbation,

ν0 = max
||x(0)||

(
1

||x||
d||x||

dt

)∣∣∣∣
t=0
. (6)

The reactivityν0 can be calculated from the Jacobian
matrix as

ν0(A) = λ1(H(A)). (7)

The matrixH(A),

H(A) = 1

2
(A + AT), (8)

is called the Hermitian part of the matrixA. As the
Hermitian part of any matrix is symmetric, its eigen-
values are real. Equilibria with positive reactivity
(ν0 > 0) are calledreactive. The larger the reactivity,
the faster a perturbation can possibly grow. In con-
trast, the size of any perturbation to a non-reactive
equilibrium decays monotonically.
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2.3. Transient responses:0< t <∞

Resilience describes the response to perturbation in
the limit ast → ∞. Reactivity characterizes responses
in the limit t → 0. There is often interesting transient
behavior between these two limits. A bound on the
amplification of a perturbation that holds for all time
is given by theamplification envelope:

ρ(t) ≡ max
x(0)
=0

||x(t)||
||x(0)|| = |||eAt|||, (9)

where||| · ||| is the matrix norm induced by the Eu-
clidean vector norm(Neubert and Caswell, 1997). This
matrix norm is easily calculated in many mathemati-
cal software packages. In Matlab, the matrix norm is
given by the commandnorm().

Reactivity and resilience are related to the slope of
the natural logarithm of the amplification envelope:

ν0 = lim
t→0+

d

dt
ln ρ(t), (10a)

ν∞ = lim
t→∞

d

dt
ln ρ(t). (10b)

Other properties of the amplification envelope, like
its maximum,ρmax, the time after the perturbation
when the maximum occurs,tmax, and the return time,

Fig. 1. Amplification envelopes (ρ(t)) for the matricesA1 (a, solid line),A2 (a, dashed line),A3 (b, solid line), andA4 (b, dashed line),
as given by equations(11). Insets show the responses to typical perturbations in the phase plane. Equilibria whose linearizations give
matricesA2 andA4 are reactive.

TR = ∫∞
0 ρ(t)dt, are useful for describing the shape

of the amplification envelope and for characterizing
the transient response to perturbations(Neubert and
Caswell, 1997). In this article, we will limit our atten-
tion to resilience and reactivity.

2.4. Examples

Fig. 1ashows the amplification envelopes for two
matrices,

A1 =
(

−1 0

0 −10

)
and A2 =

(
−1 15

0 −10

)
.

(11)

A1 and A2 have the same dominant eigenvalue
(λ1 = −1), and hence the same resilience (ν∞(A1) =
ν∞(A2) = 1). As both eigenvalues are real, the
matricesA1 and A2 represent linearizations around
a stable node. Asymptotically, perturbations gov-
erned byA1 andA2 decay at the same rate, but the
transient dynamics are very different (Fig. 1a). The
system described byA2 exhibits transient growth of
perturbations, as indicated by the hump in the ampli-
fication envelope; its reactivity isν0(A2) ≈ 3.25> 0.
The system described byA1 cannot exhibit transient
growth becauseν0(A1) = −1< 0.
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Fig. 1b shows amplification envelopes for the two
matrices

A3 = 5

6

(
−1 −1

1 −0.2

)
and A4 =

(
−1 −1

7 0

)
,

(12)

which represent linearizations around stable foci.
A3 and A4 have the same resilience (ν∞(A3) =
ν∞(A4) = 0.5), but their reactivities are different
(ν∞(A3) ≈ −0.17, ν∞(A4) ≈ 2.54). As a result, the
system governed byA4 exhibits transient growth of
perturbations, but that governed byA3 does not.

3. Food web models

We now turn to food web models. We will show
that in a wide class of such models any equilibrium
point at which all species coexist must be reactive.
We start with the simplest consumer–resource model
(a two-species predator–prey model).

3.1. Predator–prey models

Predator–prey models often take the form

dn1

dt
= n1f1(n2), (13a)

dn2

dt
= f2(n1, n2), (13b)

wheren1 is the predator density andn2 the prey den-
sity. As written, (13a) assumes that the per capita
growth rate of the predator,f1(n2), may depend on the
prey density but is independent of the predator density.
This density-independence of the predator growth rate
is crucial to our results. Most published predator–prey
models fall into this class.

If the model has an equilibrium pointn̂ = [n̂1, n̂2]T

such that̂n1 > 0, thenf1(n̂2) = 0. As a consequence,
the Jacobian matrix has the form

A =


 f1(n2) n1

df1

dn2
∂f2

∂n1

∂f2

∂n2



∣∣∣∣∣∣∣
n=n̂

=
(

0 a12

a21 a22

)
.

(14)

As a11 = 0, the stable equilibrium point̂n must be re-
active. We can prove this by using the Routh–Hurwitz
criteria to show thatλ1(H(A)) is positive.

For any real 2× 2 matrix B, the Routh–Hurwitz
criteria

tr B < 0, detB > 0 (15)

are necessary and sufficient conditions for the eigen-
values ofB to have negative real parts (e.g.Murray
(2002)). We assume that̂n is stable, and that the Ja-
cobianA has no eigenvalue equal to zero (a generic
property of linear operators inRn (Hirsch and Smale,
1974)). This implies that trA < 0 and detA > 0.

If H(A) violates either of the Routh–Hurwitz crite-
ria, thenλ1(H(A)) > 0 and the equilibrium point is
reactive. ForA as given by(14), we have

trH(A) = tr A < 0, (16)

and

detH(A) = −1
4(a12 + a21)

2 < 0. (17)

Since detH(A) < 0, the Routh–Hurwitz criteria(15)
are violated, and any stable coexistence equilibrium of
any predator–prey system of the form (13) is reactive.

3.2. Food chains and food webs

We now consider a linear food chain ofm species,
in which n1 is the top predator andnm is the basal
species:

dn1

dt
= n1f1(n2), (18a)

dni
dt

= fi(ni−1, ni, ni+1), for i = 2, . . . , m− 1,

(18b)

dnm
dt

= fm(nm−1, nm). (18c)

As written, (18a) implies that the per capita growth
rate of the top predator depends on the density of its
prey but is independent of its own density.

Linearizing (18) around the coexistence equilibrium
gives the model(3) with
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A =




0 a12

a21 a22 a23

a32 a33 a34

. . .
. . .

. . .

. . .
. . . am−1,m

am,m−1 amm



.

(19)

The only non-zero elements fall along the three central
diagonals ofA. The first element on the main diagonal,
a11, is always zero, becausef1(n̂2) = 0 at the coexis-
tence equilibrium. To show that the coexistence equi-
librium is always reactive, we must show thatH(A)
has at least one positive eigenvalue. To do that, we
will make use of the following fact: any real, sym-
metric, matrixB with b11 = 0 and no zero eigenvalue
has at least one positive eigenvalue (seeAppendix A).
Thus, ifH(A) has no zero eigenvalues, it must have
at least one positive eigenvalue (since its first diagonal
element is zero). As a result, any coexistence equilib-
rium of the food-chain model (18) is reactive, unless
λ1(H(A)) = 0. If λ1(H(A)) = 0, thenH(A) is singu-
lar, but nonsingularity is a generic property of linear
operators (Hirsch and Smale (1974), p. 157). Thus,
any food chain model whose linearization is of the
form (19) is either reactive or can be approximated
arbitrarily closely by one that is reactive.

The same argument can be applied toanyfood web
model in which one species, typically a top predator,
has a per capita growth rate independent of its own
density. Without loss of generality, one can label this
speciesn1. The Jacobian matrix will then necessarily
have a zero as its first diagonal element, and as a result
the equilibrium must be reactive. If, on the other hand,
there is no species in the web whose per capita growth
rate is independent of its own density, the above argu-
ments do not apply. This situation often arises when
the mortality rates of top predators—the so-calledclo-
sure terms—are density dependent. We examine this
case next.

4. Closure terms

Food web models are typically assembled from
three types of components: (i) source terms that de-

scribe the dynamics of basal species that do not feed
on other species in the web; (ii) consumption terms
that link consumers and their resources in the web;
and (iii) terms describing the mortality of top preda-
tors which are not fed upon by other species in the
web. In plankton food webs, part of the mortality of
top predators may result from higher-order predators
(e.g. fish) that are not included in the model. Ac-
knowledging their role in truncating the food web,
the top-predator mortality terms have been dubbed
closure terms(Steele and Henderson, 1992, 1995;
Totterdell, 1993).

Most food web models include only density-inde-
pendent mortality of the top predators, so the closure
terms are proportional to the population densities of
the species whose mortality they describe. If the clo-
sure term does reflect, at least in part, the action of
higher-order predators, then the functional or numeri-
cal responses of those predators might produce appar-
ent density-dependent mortality of the top predator,
and thus a non-linear closure term.

Steele (1976)first recognized that “what appears
at first as a minor technical problem, the closing of
the upper end of the food chain, in fact has signifi-
cant implications for the outputs. . . .” The effects of
non-linear closure terms on the stability, asymptotic
dynamics, and bifurcation structure of food chain
models have been studied byGilpin (1975), Steele
(1976), Steele and Henderson (1981, 1992, 1995),
Bazykin et al. (1981), Hainzl (1988, 1992), Gatto
(1991), Edwards and Brindley (1996, 1999), Caswell
and Neubert (1998), Edwards and Bees (2001)and
Edwards and Yool (2000). Here, we examine the
effects of non-linear closure terms on transient dy-
namics. As these non-linearities significantly increase
the difficulty of mathematical analysis, we will limit
our attention to the two-species predator–prey model:

dn1

dt
= [g1(n2)− µ(n1)]n1, (20a)

dn2

dt
= g2(n1, n2), (20b)

wheren1 and n2 are the respective population den-
sities of the predator and the prey. A particular ex-
ample of this model is the MacArthur–Rosenzweig
predator–prey model that we examine in more detail
in the next section.
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The closure term in model (20) isµ(n1)n1. Caswell
and Neubert (1998)suggested that if the hazards of
density-independent and density-dependent mortality
are independent one should write

µ(n1) = (m+ εnα1), (21)

wherem is the density-independent hazard andεnα1
is the density-dependent hazard. By varyingm andε
it is possible to change the per capita mortality from
completely density-independent (ε = 0) to completely
density-dependent (m = 0). Varying α changes the
dependence of mortality on density from decelerating
(0< α < 1) to linear (α = 1) to accelerating (α > 1).
The linear case corresponds to a Type I functional re-
sponse in the higher-order predators, and the deceler-
ating case crudely approximates a Type II functional
response. The accelerating case seems biologically un-
realistic, so we will limit our attention to 0< α ≤ 1.

If the Jacobian of (20) at a stable coexistence equi-
librium (n̂1, n̂2) is given by the matrixA, the resilience
and reactivity of the equilibrium are

ν∞= − 1

2
Re
[
a11+a22+

√
(a11−a22)2+4a12a21

]
,

(22)

and

ν0=1

2

(
a11+a22+

√
(a11−a22)2 + (a12 + a21)2

)
.

(23)

In turn, a11 = −αn̂α1; the other entries inA depend
on α only implicitly through their dependence on̂n1
andn̂2.

The effects of non-linear closure on transient dy-
namics can be studied by varyingα. Increasingα
not only increases the non-linear response but also
changes the total mortality rateµ. In order to isolate
the effects of the nonlinearity, any time we changeα
we will simultaneously changeε so as to holdµ con-
stant atµ̂. Given this restriction, equations (20) then
imply that:

dn̂1

dα
= dn̂2

dα
= 0. (24)

The relationship between resilience and the strength
of density-dependent closure is complicated. Differen-

tiating the resilience(22), and using(24), we obtain:

dν∞
dα

= ∂ν∞
∂a11

∂a11

∂α
, (25a)

= α2n̂α−1
1

2
Re

(
1 + a11 − a22√

(a11 − a22)2 + 4a12a21

)
.

(25b)

Thus, dν∞/dα > 0 unless(a11−a22)
2 +4a12a21 > 0

and
√
(a11 − a22)2 + 4a12a21 < −(a11−a22). The re-

lationship between reactivity andα, however, is more
straight-forward. Differentiating the reactivity(23),
and again using(24), we obtain:

dν0

dα
=
∑
i,j

∂ν0

∂aij

(
∂aij

∂α
+

2∑
k=1

∂aij

∂n̂k

dn̂k
dα

)
(26a)

= ∂ν0

∂a11

∂a11

∂α
(26b)

= −α
2n̂α−1

1

2

(
1 + a11 − a22√

(a11 − a22)2 + (a12 + a21)2

)

(26c)

< 0. (26d)

Thus, increasing the strength of the density-dependence
in the closure term, while holding the total per capita
mortality rate constant, always decreases reactivity.
But can density-dependent closure eliminate the pos-
sibility of transient growth? That is, by increasing
α, can we make a reactive equilibrium nonreactive?
To see if we can, we will investigate the transient
dynamics of a particular predator–prey model next.

5. An example: the MacArthur–Rosenzweig
predator–prey model

The MacArthur–Rosenzweig predator–prey model
with a nonlinear closure term is:
dN1

dT
=
[

CAN2

N2 + B − (M + ENα1)

]
N1, (27a)

dN2

dT
= RN2

(
1 − N2

K

)
− AN2N1

N2 + B. (27b)

This model incorporates logistic prey growth with
growth rateR and carrying capacityK, and a Holling
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Type II functional response with saturation levelA,
and half-saturation constantB. The yield coefficient
C transforms units of prey into predators. Setting

n1 = AN1

RB
, n2 = N2

B
, t = RT, γ = CA

R
,

κ= K

B
, m = M

CA
, (28a)

and

ε = EAα−1

BCRα
, (28b)

transforms the model into dimensionless form:

dn1

dt
= γ

[
n2

n2 + 1
− (m+ εnα1)

]
n1, (29a)

dn2

dt
= n2

(
1 − n2

κ

)
− n1n2

n2 + 1
. (29b)

Neubert and Caswell (1997)studied the transient dy-
namics of system (29) in the case when the closure
term is linear (i.e. whenε = 0). In this case, the unique
positive equilibrium is given by

n̂1 = (1 + n̂2)

(
1 − n̂2

κ

)
, (30a)

Fig. 2. The reactivity (ν0, dashed line) and resilience (ν∞, solid line) of the coexistence equilibrium of model (29) as functions of the
rescaled maximum predator growth rateγ. The other parameters are set asm = 0.4, ε = 0, κ = 1.

n̂2 = m

1 −m, (30b)

and the Jacobian matrix is

A =




0
γn̂1

(1 + n̂2)2

−m 1 − 2n̂2

κ
− n̂1

(1 + n̂2)2


 . (31)

The eigenvalues ofA have negative real parts, and
therefore the equilibrium is stable, when:

κ − 1

2
< n̂2 < κ. (32)

(This corrects a typographical error inNeubert and
Caswell (1997).)

In Fig. 2, we show the resilience and reactivity of
this equilibrium as functions of the rescaled maximum
predator growth rateγ. There is no simple relationship
between these two quantities. Forγ < 1, the equilib-
rium point is a stable node, and resilience grows mono-
tonically with γ. Forγ > 1, the equilibrium point is a
stable focus, and resilience is independent ofγ. Reac-
tivity is lowest forγ ≈ 2.5, and increases dramatically
asγ exceeds this value.

When model (29) has nonlinear closure, the equilib-
rium cannot be written in closed form. The Jacobian,
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written in terms of the equilibrium population sizes, is

A =




−γαεn̂α1
γn̂1

(1 + n̂2)2

− n̂2

1 + n̂2
1 − 2n̂2

κ
− n̂1

(1 + n̂2)2


 . (33)

We are interested in the reactivity and resilience cal-
culated fromA asα changes in a way that maintains
the per capita mortality level; i.e. increasingα while
holdingm+ εn̂α1 constant.

To facilitate comparison with the results shown in
Fig. 2, we fixed the equilibrium at(n̂1, n̂2) = (5

9,
2
3)

by settingm + εn̂α1 = 0.4. We setm = 0.2 so that
εn̂α1 = 0.2. We then computed the resilience and re-
activity of the equilibrium over a range ofγ and α
values.

Fig. 3a shows that nonlinear closure can qualita-
tively change the relationship between the predator’s
maximum per capita rate of increase (γ) and resilience
(ν∞). For α = 0, resilience is a nondecreasing func-
tion of γ (Fig. 2); for α > 0, resilience has a peak
and decreases for largeγ. For γ fixed and small, re-
silience increases withα. For γ large, resilience is
maximized at intermediate values ofα. In Fig. 3b, we
see that nonlinearity in the closure term can produce
even more dramatic effects on reactivity. Forα = 0,
the equilibrium point is always reactive (except for a
single value ofγ for which ν0 = 0), but for α > 0
and intermediate values ofγ it is not.

6. Discussion

We have shown that reactivity is a property of
the equilibria of a class of predator–prey and food
web systems described by ordinary differential equa-
tions. That class—those with at least one species
with density-independent mortality—is large and im-
portant. An idea of just how large is given by the
fact that it includes every predator–prey, chemostat
and food web model in the recent texts byGurney
and Nisbet (1998)andKot (2001), all but two of the
predator–prey models in the monograph ofMurdoch
et al. (2003), and all but one of the many food web
models in DeAngelis (1992). In addition to these
theoretically-oriented models, it includes such em-
pirical nutrient cycling models as those for fjord

Fig. 3. Contours of (a) resilience and (b) reactivity for the coex-
istence equilibrium of model (29) as functions of log10γ and the
dimensionless parameterα. In this figure,κ = 1, m = 0.2, and
the per capita predator mortality ratem+ εn̂α1 was held constant
at 0.4. Numbers in parentheses are negative.

ecosystems(Ross et al., 1993)and the oceanic mixed
layer (Fasham et al., 1990).1

The lack of density-dependent mortality in food web
models does not, of course, guarantee that it is rare
in nature. But to the extent that these models reflect

1 We note that many empirical food web models contain param-
eters that are forced by periodically varying seasonal conditions.
Although we have presented the reactivity of equilibria, periodic
attractors, resulting from external forcing or from intrinsic limit
cycles, may also be reactive. The proper definition of reactivity in
such cases is still an open problem.
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the mechanisms of actual food webs, reactivity is the
rule, not the exception. Thus, we can expect that per-
turbations of stable food webs will, in the short term,
be amplified. Even small perturbations may produce
large excursions from equilibrium. The consequences
of this can be profound. A short-term study may fail to
detect the equilibrium, or any tendency to return to it,
at all. If perturbations occur repeatedly (as is certainly
true in nature), whether the system returns to equilib-
rium between perturbations will depend more on the
reactivity than on resilience. We conjecture that re-
active systems will have higher variance around their
equilibria than non-reactive systems.
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Appendix A

Here, we prove that ifB is a real, symmetric,m×m
matrix withb11 = 0 and no zero eigenvalue thenB has
at least one positive eigenvalue. This fact is a corollary
of the inclusion principle(Horn and Johnson, 1985):

Theorem 1. LetC be anm×m Hermitian matrix, let
r be an integer with1 ≤ r ≤ m, and letCr denote any
r × r principal submatrix ofC (obtained by deleting
anym− r rows and the corresponding columns from
C). Let the eigenvalues ofC, ηi(C), be arranged such
that η1(C) ≤ η2(C) ≤ · · · ≤ ηm(C). For each integer
k, such that1 ≤ k ≤ r we have:

ηk(C) ≤ ηk(Cr) ≤ ηk+m−r(C). (A.1)

Applying this theorem to−B, with r = 1, k = 1, and
−b11 as the corresponding principal submatrix, shows
that η1(−B) ≤ η1(−b11) = 0. Thus, the smallest
eigenvalue of−B is not positive. The largest eigen-
value ofB must therefore be nonnegative. IfB has no
zero eigenvalues, its largest eigenvalue must be posi-
tive.
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